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1.0 Background 
 
Microbiological Contaminants in Treated Wastewater 

Demand for high quality drinking and recreational waters rises exponentially due to 
global demographic growth in the human population, reinforcing an urgent need for 
microbiologically safe reclaimed waters (Graczyk and Lucy,  2007).  Wastewater discharges are 
worldwide risk factors for the introduction of human pathogens into surface waters used as 
drinking and recreational resources.  Cryptosporidium parvum, Giardia duodenalis, and human-
virulent microsporidia, (i.e., Encephalitozoon intestinalis, E. hellem, E. cuniculi, and 
Enterocytozoon bieneusi) are waterborne enteropathogens inflicting considerable morbidity in 
healthy people and mortality (e.g., Cryptosporidium and microspora) in immunodeficient 
individuals (Savioli, et al., 2006; Weber and Bryan, 1994).  Their transmissive stages, i.e., 
oocysts, cysts, and spores, respectively, are resistant to environmental stressors and are therefore 
long-lasting and relatively ubiquitous in the environment (Graczyk, et al., 1997; Matchis, et al., 
2005; Wolfe,1992).  These pathogens are category B biodefense agents on the NIH list.  
Microsporidian spores are on Contaminant Candidate List of the U.S. EPA (Nwachcuku and 
Gerba, 2004) because spore identification, removal, and inactivation in drinking water are 
technologically challenging.  Surface water is not routinely monitored for these pathogens, 
despite evidence demonstrating environmental contamination derived from wastewater 
discharges (Graczyk and Lucy, 2007).  Environmentally, all these pathogens have a broad 
zoonotic reservoir (Graczyk et al., 1997; Matchis et al., 2005; Savioli, et al., 2006). 

 
Constructed Wetland Concept 

Constructed wetlands of either vertical or horizontal flow are increasingly used 
worldwide for secondary or tertiary treatment of municipal wastewater due to minimum electric 
requirements and low maintenance costs (Davidson et al., 2005; Reinoso et al., 2008).  The 
wetland concept has become an attractive wastewater treatment alternative to conventional 
tertiary treatment processes for: a) municipal wastewater; b) on-site domestic wastewater 
treatment; and c) concentrated animal feeding operations (CAFO) (Karpiscak et al., 2001).  In 
wetlands, human-pathogenic microorganisms are physically removed and biodegraded by 
sedimentation (Dai and Boll, 2006; Karim et al., 2004), filtration and evapotranspiration-driven 
attachment to plant roots (Gerba et al., 1999; Dorsch and Veal, 2001; Weaver et al., 2003), 
natural die-off (Nokes et al., 2003), UV radiation, straining and sorption by the biofilm 
(Quinonez-Diaz et al., 2001), and protozoan predation (Stott et al., 2001).  It is thought that 
performance of wetlands in removing human pathogens is superior to that of secondary 
wastewater treatment, i.e., conventional sewage sludge activation (Ulrich et al., 2005).  
Horizontal wetlands usually discharge to surface waters that are frequently used for recreation or 
drinking water production (Davidson et al., 2005).   
 
Constructed Wetland Operation 

In general, wastewater can be injected under the wetland surface for plug flow hydraulics 
(Weaver et al., 2003), or be delivered to the wetland surface for free-surface flow.  Because the 
wastewater resides in wetlands for certain time, these areas can act as endemic sites supporting 
both propagation and transmission of human zoonotic pathogens (Graczyk et al., 2007).  Sizing 
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reed-bed systems for a residence time of 5 days has become a standard practice (Davidson et al., 
2005; Quinonez-Diaz et al., 2001; Thurston et al., 2001), leaving plenty of time for propagation 
and spreading of wastewater-derived pathogens in wetland habitats via a wide variety of wildlife 
(Graczyk and Lucy, 2007; Graczyk et al., 2007).  In addition, any temporal or permanent 
malfunctioning caused by clogged inlet pipes can cause hydraulic short circuits that bypass part 
of the filtration area in wetlands.   

 
Aims of the Project 

The purposes of the project were to: a) determine species of microbiological 
contaminants entering, residing, and leaving constructed horizontal wetlands used for tertiary 
treatment of municipal wastewater; and b) determine removal efficacy of Cryptosporidium 
oocysts, G. duodenalis cysts, and human-virulent microsporidian spore species by wetlands from 
secondary-treated wastewater.  

 
 
2.0 Methodology 
 
Selection of Wetlands 

Samples originated from four constructed horizontal wetlands, i.e., Wetland A 
(53°40'41"N, 08°34'24"W), Wetland B (53°03'12"N, 08°08'57"W), Wetland C (54°04'07"N, 
08°12'12"W), and Wetland D (53°41'11"N, 08°45'17"W).  All wetlands received unchlorinated 
secondary treated municipal wastewater after sewage sludge activation and secondary 
sedimentation.  All wetlands were small scale wetlands discharging to surface waters.  All 
wetlands were multispecies systems with both emergent and submerged plants; overwhelmed by 
the Common reed, P. australis.  The inflow, outflow and vegetation densities were similar at all 
wetlands, and the influent and effluent flow rates were relatively constant.   

 
Sample Collection 

Two grab samples (2 L) of both wetland influents and effluents were collected in addition 
to two samples from the wetland longitudinal transect in regular intervals. Samples were 
collected from August through December 2009 (Table, 1, 2, 3, 4, and 5).  Samples were 
transported to the laboratory in a cooler and processed by gravity sedimentation (Graczyk et al., 
2007).   Briefly, samples were vortexed, transferred to 1-L-capacity Imhoff settlement cones and 
left overnight at 4°C.  Fifty ml of the top sediment layer were transferred to a plastic 50-ml tube 
and centrifuged (3,000g, 10 min).  The supernatant was discarded and the pellet transferred to a 
1.5-ml tube and preserved with 75 % ethanol.  The recovery efficacy of human waterborne 
pathogens from wastewater matrices was determined previously to be approximately 77% 
(Graczyk et al., 2007). 

 
Sample Processing 

The ethanol was washed using phosphate buffered saline (PBS) (pH 7.4), centrifugation 
(5,000g, 10 min) and the pellet purified by sugar floatation; 2.5M sucrose solution with a specific 
gravity of 1.34 was used (Kahle and Thurston-Enriquez, 2007).  The resulting pellet was divided 
evenly into two aliquots.  The first was processed for C. parvum and G. duodenalis by 
multiplexed fluorescence in situ hybridization (FISH) in combination with IFA, and the second 
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for human-virulent microsporidia (i.e., E. intestinalis, E. hellem, E. cuniculi, and E. bieneusi) by 
multiplexed FISH (Graczyk, 2007).   

 
 
3.0 Results 
 
Table 1. Results for Samples Collected in August 2009 and Processed by the Fluorescence In Situ Hybridization Assay. 
 

Wetland Sample ID 
Cryptosporidium 
parvum oocysts/L 

Giardia 
duodenalis 

cysts/L 

Microsporidian 
(Encephalitozoon 
bieneusi) spores/L 

A Influent 12 2 2 

  
Wetland 
transect 1 3 2 4 

  
Wetland 
transect 2 0 1 2 

  Final effluent 5 0 0 
 B Influent 0 0 3 

  
Wetland 
transect 1 3 4 0 

  
 Wetland 
transect 2 1 2 0 

  Final effluent 9 1 2 
 C Influent 4 0 1 

  
Wetland 
transect 1 2 3 0 

  
Wetland 
transect 2 0 1 0 

  Final effluent 8 0 0 
D  Influent 1 1 0 

  
Wetland 
transect 1 0 1 0 

  
Wetland 
transect 2 0 0 0 

 Final effluent 2 3 3 
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Table 2. Results for Samples Collected in September 2009 and 

Processed by the Fluorescence In Situ Hybridization Assay. 
 

Wetland Sample ID 
Cryptosporidium 
parvum oocysts/L 

Giardia 
duodenalis 

cysts/L 

Microsporidian 
(Encephalitozoon 
bieneusi) spores/L 

A Influent 1 2 2 

  
Wetland 
transect 1 3 0 3 

  
Wetland 
transect 2 2 0 2 

  Final effluent 4 2 1 
 B Influent 0 0 3 

  
Wetland 
transect 1 3 4 2 

  
 Wetland 
transect 2 1 7 5 

  Final effluent 2 6 0 
 C Influent 0 0 1 

  
Wetland 
transect 1 2 3 0 

  
Wetland 
transect 2 1 2 0 

  Final effluent 7 0 0 
D  Influent 1 1 0 

  
Wetland 
transect 1 0 1 3 

  
Wetland 
transect 2 0 4 2 

 Final effluent 4 6 1 
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Table 3. Results for Samples Collected in October 2009 and Processed by the Fluorescence In Situ Hybridization Assay. 
 

Wetland Sample ID 
Cryptosporidium 
parvum oocysts/L 

Giardia 
duodenalis 

cysts/L 

Microsporidian 
(Encephalitozoon 
bieneusi) spores/L 

A Influent 1 3 3 

  
Wetland 
transect 1 0 0 0 

  
Wetland 
transect 2 2 0 0 

  Final effluent 0 0 1 
 B Influent 4 0 1 

  
Wetland 
transect 1 1 0 4 

  
 Wetland 
transect 2 1  5 

  Final effluent 3 0 0 
 C Influent 0 0 0 

  
Wetland 
transect 1 2 3 0 

  
Wetland 
transect 2 0 0 0 

  Final effluent 2 2 0 
D  Influent 1 1 0 

  
Wetland 
transect 1 0 1 3 

  
Wetland 
transect 2 3 4 2 

 Final effluent 4 6 1 
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Table 4. Results for Samples Collected in November 2009 and 
Processed by the Fluorescence In Situ Hybridization Assay. 

 

Wetland Sample ID 
Cryptosporidium 
parvum oocysts/L 

Giardia 
duodenalis 

cysts/L 

Microsporidian 
(Encephalitozoon 
bieneusi) spores/L 

A Influent 7 4 7 

  
Wetland 
transect 1 3 0 3 

  
Wetland 
transect 2 2 0 2 

  Final effluent 0 0 0 
 B Influent 0 0 3 

  
Wetland 
transect 1 3 2 2 

  
 Wetland 
transect 2 1 5 3 

  Final effluent 0 6 0 
 C Influent 0 0 1 

  
Wetland 
transect 1 2 3 0 

  
Wetland 
transect 2 1 2 2 

  Final effluent 3 0 0 
D  Influent 1 1 0 

  
Wetland 
transect 1 0 1 3 

  
Wetland 
transect 2 0 2 2 

 Final effluent 3 4 1 
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Table 5. Results for Samples Collected in December 2009 and 
Processed by the Fluorescence In Situ Hybridization Assay. 

 

Wetland Sample ID 
Cryptosporidium 
parvum oocysts/L 

Giardia 
duodenalis 

cysts/L 

Microsporidian 
(Encephalitozoon 
bieneusi) spores/L 

A Influent 7 6 2 

  
Wetland 
transect 1 3 0 5 

  
Wetland 
transect 2 2 0 2 

  Final effluent 1 0 0 
 B Influent 0 0 3 

  
Wetland 
transect 1 3 4 2 

  
 Wetland 
transect 2 1 5 2 

  Final effluent 1 6 0 
 C Influent 0 0 1 

  
Wetland 
transect 1 2 3 0 

  
Wetland 
transect 2 1 2 0 

  Final effluent 3 0 0 
D  Influent 1 1 0 

  
Wetland 
transect 1 0 1 3 

  
Wetland 
transect 2 0 4 1 

 Final effluent 4 3 1 
 
 

 
Overall, three species of human protozoan enteropathogens were detected, i.e., C. 

parvum, G. duodenalis, and E. bieneusi.  Most pathogens detected by the FISH assays were 
viable; a fraction of non-viable cells represented less than 2%.  Viable G. duodenalsi cysts vs. 
nonviable cysts were clearly differentiated by color as a result of FISH and mAb labeling.  
Nonviable cysts were represented by:  a) shells with apparently structurally damaged walls; and 
b) intact cells with a very small amount of internal structures with diffused appearance.  In 
comparison, potentially viable intact cysts were filled out completely with cytoplasm without the 
gap between the internal structures and the wall.  Cryptosporidium parvum oocysts labeled by 
FISH and mAb were predominantly intact, revealed a small gap between the oocyst wall and 
internal structures, and in most of them the sporozoites were visible.  In comparison, dead 
oocysts, i.e., oocyst shells, frequently had discernable damage to their walls. 

 
 Analysis of samples collected in August demonstrated that in 5 of 12 (42%) sample sets, 

the number of pathogens found in the final effluent was lower than in the influent; and in 6 of 12 
(50%) samples sets the number of pathogens the final effluent was higher than in the influent.  
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Analysis of samples collected in September demonstrated that in 3 of 12 (25%) sample sets, the 
number of pathogens identified in the final effluent was lower than in the influent; and in 7 of 12 
(58%) sample sets, the number of pathogens in the final effluent was higher than in the influent. 
Analysis of samples collected in October demonstrated that in 6 of 12 (50%) sample sets, the 
number of pathogens identified in the final effluent was lower than in the influent; and in 5 of 12 
(42%) sample sets, the number of pathogen in the final effluent was higher than in the influent.  
Analysis of samples collected in November demonstrated that in 6 of 12 (50%) sample sets, the 
number of pathogens identified in the final effluent was lower than in the influent; and in 5 of 12 
(42%) sample sets, the number of pathogens in the final effluent was higher than in the influent. 
Analysis of samples collected in December demonstrated that in 5 of 12 (42%) sample sets, the 
number of pathogens identified in the final effluent was lower than in the influent; and in 6 of 12 
(50%) sample sets, the number of pathogens in the final effluent was higher than in the influent.   

 
Overall, 42% of sample sets showed decrease of pathogens in the final effluent; 48% of 

sample sets showed increase of pathogens in the final effluent; and 10% of sample set showed 
even number of pathogens in influent as comared to the final effluent.   
 
4.0 Conclusions  

 
The project demonstrated that: a) composition of human pathogen species in secondary 

treated wastewater entering constructed wetlands and in tertiary treated wastewater is highly 
complex and dynamic; b) small-scale constructed wetlands may not provide sufficient 
remediation for human zoonotic protozoan pathogens; and c) most of the pathogens discharged 
by wetlands to surface waters were viable thus potentially capable of causing human infections. 

  
Presence of pathogens at higher concentrations in wetland-polished wastewater than in 

influents may be explained by the fact that these pathogens were: a) propagated in the wetlands 
by residing wildlife; b) contributed to the wetland water by visiting wildlife; or c) originated 
from other sources, e.g., surface runoff from wetland banks utilized by rodents as habitats.  
Aquatic birds and mammalian wildlife that inhabit wetlands can disseminate human-virulent 
species of Cryptosporidium, Giardia, and microsporidia, i.e., E. hellem and E. bieneusi (Graczyk 
et al., 2007; Graczyk et al., 2008; Slodkowicz-Kowalska et al., 2007; Sulaiman et al., 2003).  It 
has been estimated that a single visitation of an average size waterfowl flock can introduce into 
surface water reservoirs approximately: a) 9.3 x 106 C. parvum oocysts; b) 1.1 x 107 G. 
duodenalis cysts; and c) 9.1 x 108 E. hellem spores (Graczyk et al., 2008) 

 
Wildlife that inhabits or visit constructed wetlands has previously been demonstrated to 

significantly contribute fecal coliforms (e.g., Escherichia coli and Klebsiella pneumonia) to 
wetlands (Thurston et al., 2001).  It has been suggested that wildlife plays an important role in 
the elevation of total and fecal coliform levels in wetland effluents due to their fecal deposition 
(Thurston et al., 2001), and the spontaneous multiplication of wildlife-derived coliforms in 
wetlands during summer months (Geldreich,1996).  The pathogens identified in the present study 
cannot multiply in the environment without their hosts.   
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There are several possibilities why the levels of Cryptosporidium oocysts, Giardia cysts 
and microsporidian spores in the wetland outfalls were higher than in the influents.  All wetlands 
operated without implemented means to prevent animal access.  Vegetation density in 
constructed wetlands has been shown not to influence the removal rates of Cryptosporidium 
oocysts and Giardia cysts (Nokes et al., 2003.). However, robust vegetation (i.e., P.  australis) 
and tall trees around the wetland reduced exposure to sunlight, and prevented heating and full 
exposure to UV light.  In all wetlands, precipitation potentially caused: a) inflow of runoff water 
to the wetland from wetland banks inhabited by rodents; and b) surface runoff from other 
sources.  Potential malfunctioning caused by clogged inlet pipe(s) could cause temporal 
hydraulic short circuits that bypass part of the wetland filtration area consequently resulting in 
reduction or collapse of removal performances (Quinonez-Diaz et al., 2005).  Concentration of 
human pathogens in wetland samples may also show diurnal fluctuation.  Irrespective of the 
causative mechanism, we conclude that small-scale constructed wetlands may not provide 
sufficient remediation for human enteropathogens present in primary or secondary-treated 
wastewater, although such systems are excellent in absorbing, removal, and storage of nitrogen 
and phosphorus from the wastewater (Kadlec, 2005; Zhang et al., 2008).   

 
The minimal levels of non-viable pathogens in the present study indicate that the 

pathogen walls become permeable to compounds and microorganisms present in large quantities 
in wastewater and they undergo fast biodegradation.  Such a phenomenon was observed 
previously for human-pathogenic microorganisms in wastewater matrices (Graczyk et al., 2007; 
Graczyk et al., 2008).  Loss of pathogen viability in constructed wetland was attributed to the 
lytic action of bacteria and bacteriophages, oxidation reactions, adsorption, and exposure to plant 
and microbial toxins (Thurston et al., 2001). 

 
Because Cryptosporidium, Giardia, and microsporidia can infect a variety of non-human 

hosts, identification of human-pathogenic species represents a challenge.  Another challenge is 
determination of viability of these pathogens as they may be non-viable and thus, not of 
epidemiological importance.  Both challenges are addressed by the fluorescence in situ 
hybridization (FISH) technique used in the present study.  FISH employs fluorescently labeled 
oligonucleotide probes targeted to species-specific sequences of 18S rRNA, and therefore 
identification of pathogens is species-specific (Graczyk et al., 2007).  As rRNA has a short half-
life and is only present in numerous copies in viable organisms, FISH allows for differentiation 
between viable and non-viable pathogens (Dorsch et al., 2000; Vesey et al., 1998).   
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